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2.7  Constructing Symmetry Adapted Linear Combinations
A set of equivalent functions -f1, f2, ... , fn- can be used to form an n-dimensional

representation. By calculating the characters for this representation and by applying the great
orthogonality theorem, the representation can be expressed as a sum of irreducible representations.
One might ask, "what are the n-linear combinations of f1, ... , fn that transform like the irreducible
representations?" The answer is provided by the projection operator, denoted ^ iPG

.
^ iPG (fj)  =

n
g S

R
c

R̂
(Gi ) OR

^ (fj)

Here P̂ is the operator that projects out of a set of equivalent functions the Gi irreducible
representation of the point group. The n/g factor (n = dimension of the irreducible representation
and g the order of the group) usually is irrelevant. The constant factor before wavefunctions is
ordinarily determined by normalization conditions specific to the problem. The function fj chosen
can be any one of n belonging to the equivalent set. This operator sums over all the symmetry
operations R̂ the product of the character for that operation times the transformed function ÔR(fj)
by that operation. An important caveat here is that classes cannot be lumped together, as in the
preceding section. For example, in the C3 v character table the 2Ĉ3 represents the class composed

of Ĉ31 andĈ32 operations. The three different Ĉ2 operations would also have to be performed
separately on fj, since they produce different results.

As a simple example, consider the O-H stretches in water (yz as molecular plane). A useful
way to apply the formula is to tabulate the characters of the irreducible representations and list the
effect of ÔR on one of the functions at the bottom of the table.

C2 v E C2(z) sv(xz) sv(yz)
__________________________________________
A1 1 1 1 1
B1 1 -1 +1 -1
B2 1 -1 -1 +1
ÔR(O-Ha) O-Ha O-Hb O-Hb O-Ha

Apply the projection operator for A1 by multiplying the A1 row times the ÔR row and adding them
to obtain the result:

1
2 (O-Ha  +  O-Hb)

(O-Ha  +  O-Hb  +  O-Hb  + O-Ha)

=

4
1(O-Ha)   =A1P̂

According to the earlier calculation using the orthogonality theorem it shouldn't be possible to
obtain a B1 linear combination, and indeed the projection operator yields the null result.
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0

[(O-Ha)  -  (O-Hb)  +  (O-Hb)  -  (O-Ha)]

=

4
1(O-Ha)   =B1P̂

Application of the B2 projection operator yields:

P̂
B2 (O-Ha)   =

1
4

=

[(O-Ha)  -  (O-Hb)  -  (O-Hb)  +  (O-Ha)]

[(O-Ha ) -  (O-Hb)]2
1

The above linear combinations correspond to the symmetric (A1) and antisymmetric (B2) stretches
of water depicted in Figure 2.2. Whenever only two equivalent real functions are involved, then the
correct linear combinations will always be the sum and difference functions. Symmetry labels can
be assigned by inspection. The water molecule does indeed exhibit two distinct O-H IR stretches in
its infra-red spectrum at 3652 and 3756 cm-1.

 
O

H H

O

H HB2A1

Figure 2.2  The A 1 and B 2 stretching vibrations of water.
Whenever degenerate representations are involved, the task of constructing symmetry

adapted linear combinations becomes more difficult. Consider the ammonia molecule and its N-H
stretching vibrations (Figure 2.3).

 
N

Ha Hc
Hb

Figure 2.3  The N-H stretching coordinates for ammonia .
In the C3v point group, the characters for the 3-dimensional representation spanned by the three N-
H stretches would be (3 0 1). The Ê operation takes the three equivalent bonds into themselves, a
Ĉ3 operation mixes them all (i.e., none go into ± themselves to give a nonzero diagonal element in
the transformation matrix), and a ŝv leaves one bond unchanged (a +1 on the diagonal) but
interchanges the other two (0 on the diagonals). The (3 0 1) character representation reduces to A1
+ E. In applying the projection operator, it is convenient to construct a table that separates the
classes as follows.
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C3 v Ê C3 C32 sva svb svc

_________________________________________________________________
A1 1 1 1 1 1 1
A2 1 1 1 -1 -1 -1
E 2 -1 -1 0 0 0

ÔR (N-Ha) (N-Ha) (N-Hb) (N-Hc) (N-Ha) (N-Hc) (N-Hb)
ÔR (N-Hb) (N-Hb) (N-Ha) (N-Hc) (N-Hc) (N-Hb) (N-Ha)

The 3ŝv are superscripted according to whether they contain Ha, Hb, or Hc. To project out the A1
linear combination multiply the first and fourth rows to obtain:

[2(N-Ha)  +  2(N-Hb)  +  2(N-Hc)]  =  2N[(N-Ha)  +  (N-Hb)  +  (N-Hc)]
The constant N  is determined by the normalization condition specific to vibrational wavefunctions
(discussed in Chapter 5). One linear combination of the 2-dimensional E representation can be
generated by multiplying rows 3 and 4.

N[2(N-Ha)-(N-Hb)-(N-Hc)]
Another independent function can be obtained by multiplying rows 3 and 5 to give

N[2(N-Hb) - (N-Ha) - (N-Hc)]
Although these two functions form a basis for the E representation, they are not orthogonal. The
sum and difference of two similarly normalized functions are orthogonal , and this fact can be used
to construct an orthogonal pair of functions that transform like the E representation.

N[(N-Ha)  +  (N-Hb)  -  2(N-Hc)]
N[3(N-Ha)  -  3(N-H)b]  =  3N[(N-Ha)  -  (N-Hb)]

This particular orthogonal linear combination is not unique, since other linearly independent
pairs of orthogonal combinations are possible. For example, the pair of functions shown below
serve

N[2(N-Ha)  -  (N-Hb)  -  (N-Hc)]
3N[(N-Hb)  -  (N-Hc)]

equally well as an E representation. The situation resembles the diverse choices possible for the x
and y axes in C3 v. Any orthogonal pair of unit vectors perpendicular to the 3-fold axis work
equally well.

2.8  Products of Irreducible Representations and Selection Rules
Most chemists are familiar with the Laporte selection rule that g Æ g or u Æ  u electronic

transitions in atoms, diatomic molecules, and all molecules with inversion symmetry are dipole
forbidden. This arises from a consideration of the integral for the dipole moment of a transition
between two electronic states y and y´. The transition intensity is proportional to the integral
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Úy d̂y´dt, which runs over the electronic coordinates for the molecule. Since the dipole moment d̂ =
e. r , then d behaves like a vector r  and can be reduced to x, y, and z parts. A rule often cited is that
the symmetry of a product function is even if the number of times odd functions appear in the
product is even. The symmetry of a product function is odd if the number of times odd functions
appear in the product is odd. For example, Figure 2.4a displays the odd functions y = x and y = sin
x along with the even function y = cos x. The product of the two odd

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

y = x

y = sin(x)

y = cos(x)

y = 0 + 1x R= 1 

Figure 2.4a - Plots of the odd functions y = x and y = sin (x) with the
even function y = cosx for the interval -2 ≤ x ≤ 2.

and even functions gives an even product function shown in Figure 2.4b. With even functions, the
integral from x = 0 to x = ∞ is the same as from x = 0 to x = -∞ and will have a nonzero value over
the total ±∞ range. By contrast, in Figure 2.5a the odd function y = x and
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-3 -2 -1 0 1 2 3

y = x[cos(x)][sin(x)]

Figure 2.4b - Plot of the odd-odd-even product function from 2.4a,
which yields an even function.
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y=x

y = cos(x)

y = [sin(x)]2

Figure 2.5a - Plot of the odd function y = x and even functions y= (sin
x)2  and y = cos x for the interval -2 ≤ x ≤ 2.

the even functions y = (sinx)2 and y = cos x give an odd product function shown in Figure 2.5b.
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y = x(cos(x))[sin(x)]2

Figure 2.5b - Plot of the odd. even. even product function from 2.5a,
which yields an odd function.

Since the curve inverts its sign about the origin, the integral from x = 0 to x = ∞ will have the
opposite sign of that from x = 0 to x = -∞. Thus, the two segments of the integral cancel and the
total integral is exactly zero.

The behavior of even and odd functions can be viewed in the context of the character table
for the Ci  group.

Ci E i
________________________________
Ag 1 1 Rx, Ry, Rz
Au 1 -1 x,y,z

The Ci  group is a subgroup for any molecule that contains an inversion center. The rightmost
column in the character table provides information that rotation around the x, y, or z axes (Rx, Ry,
Rz) each transform like an Ag irreducible representation. The vectors x,y,z (and hence the dipole
moment operator components along these axes) each transform like Au. The symmetry
representation of product functions can be computed by multiplying the corresponding 1-
dimensional matrix representations (i.e., the characters). Thus the symmetry of x(sinx)(cosx) is
given by the direct product of the characters  for Au x   Au x  Ag = (1.1.1=1 for E and -1.-1.1=1
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for i) = Ag. The rule that only integrals of even functions are nonzero becomes a rule that only
integrals of a function transforming like the totally symmetric representation are nonzero. These
conclusions can be generalized to all point groups.

Suppose f1 transforms like G1 and f2 like G2. How does the product function f1f2
transform? This  question is answered by the direct product representation

G(f1f2) = G(f1) x G(f2)
The characters of G(f1f2) are easily calculated by the formula cR̂ (f1f2) = cR̂ (f1) c R̂  (f2).

C3 v E 2C3 3sv
___________________________________
A1 1 1 1 z
A2 1 1 -1
E 2 -1 0 (x,y)

For example, in C3v.if f1 transforms like E and f2 like A2 then:
X(f1f2) = 2 -1 0 = E

If f1 transforms like E and f2 like E, then:
X(f1f2) = 4 1 0 = A1 + A2 + E

Notice that the latter direct product produces a four-dimensional reducible representation. For all
groups, the integral of a function over all space is nonzero only if the function transforms like the
totally symmetric representation for that group. In the preceding example:

Ú
∞

-∞
xE A2 dt  =  Edt  =  0

-∞

∞
Ú

E dt  =  E
-∞

∞
Ú x Ú

∞

-∞
A1 dt  + Ú

∞

-∞
A2 dt  + Ú

∞

-∞
Edt  

0 0 0
The second integral is nonzero by virtue of the A1 piece in the direct product.

2.9  Use of Rotation Subgroups to Simplify Problems
The application of group theory becomes tedious in high symmetry molecules. Application

of the projection operator to an octahedral complex requires the calculation of transformations for
48 symmetry operations. It is often possible to work the problem in a subgroup with fewer
operations. The most useful approach, with the least chance for error, is to work in the pure rotation
subgroup of a particular group. For example, if a problem is solved in O instead of Oh it cuts the
work by one-half. To recover the Oh representations the functions in the lower symmetry subgroup
need be combined by taking appropriate sums and differences to account for the inversion
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symmetry. The reason for choosing rotation subgroups is that they determine the fundamental
degeneracies possible in a problem. The other symmetry operations merely determine subscripts
and superscripts. Several such correlations are given in Table II.3. The extension to other groups is
straightforward. Complete correlation tables for each group to all of its subgroups may be found in
the reference by Wilson, Decius, and Cross at the end of this chapter.

Consider the application of this method to determine the p-orbitals of the cyclopentadienide
anion. First, note the correlation between the D5 h C5H5

- species and its pure rotation subgroup D5 .
Since D5 h consists of E, C5, sh, 5C2, 5sv, and S5 symmetry elements the
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Table II 3. Correlation Between Groups and Their Pure Rotation Subgroups

Oh O D6 h D6 C6 v C6 Td T
__________ __________ __________ ________
A1g A1 A1g A1 A1 A A1 A
A2g A2 A2g A2 A2 A A2 A
Eg E B1g B1 B1 B E E
T1g T1 B2g B2 B2 B T1 T
T2g T2 E1g E1 E1 E1 T2 T
A1u A1 E2g E2 E2 E2
A2u A2 A1u A1
Eu E A1u A1
T1u T1 A2u A2
T2u T2 B1u B1

B2u B2
B2u B2
E1u E1
E2u E2

                                                                                                                                                            
removal of the sh, 5sn, and S5 elements leaves D5 . The table below blocks out the D5 character
table from the D5d tables in boldface type. The last line in the table contains the characters

D5h E 2C5 2C52 5C2 sh 2S5 2S53 5s n

____________________________________________________________________________
A1´ 1 1 1 1 1 1 1 1 x2 + y2, z2

A2´ 1 1 1 -1 1 1 1 -1 Rz
E1´ 2 2 cos 72˚ 2 cos 144˚ 0 2 2 cos 72˚ 2 cos 144˚ 0 (x,y)
E2´ 2 2 cos 144˚ 2 cos 72˚ 0 2 2 cos 144˚ 2 cos 72˚ 0 (x2 - y2, xy)
A1´´ 1 1 1 1 -1 -1 -1 -1
A2´´ 1 1 1 -1 -1 -1 -1 1 z
E1´´ 2 2 cos 72˚ 2 cos 144˚ 0 -2 -2 cos 72˚ -2 cos 144˚ 0 (Rx, Ry) (xz,yz)
E2´´ 2 2 cos 144˚ 2 cos 72˚ 0 -2 -2 cos 144˚ -2 cos 72˚ 0
G(p) 5 0 0 -1 -5 0 0 1
for the five equivalent pp orbitals on carbon in the C5H5

- ion, Figure 2.6, under the various
operations of the point group. This reduces to (5 0 0 -1 -5 0 0 1) = A2´´ + E1´´ + E2´´ in D5 h.
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Figure 2.6  The five equivalent π-orbitals in the cyclopentadienide ion.

π1

π2

π3 π4

π5

C5

The correlation table shown below can be constructed by comparing the characters in the D5  and
D5 h group. For example, the A2 representation in D5 , which has a -1 character for C2 and +1 for E,
C5, and C52 correlates with either the A2´ or A2´´ representations of D5 h. they have identical
characters for the listed operations.

D5 h Æ D5 Æ C5
_____________________________________
A1´ A1 A
A2´ A2 A
E1´ E1 E1
E2´ E2 E2
A1´´ A1 A
A2´´ A2 A
E1´´ E1 E1
E2´´ E2 E2

The D5  group blocked out in the D5 h character table is identical to the section below it for the
double primed representations. Thus the double primed and primed representations correlate
similarly. By similar reasoning the correlation extends to the C5  group derived in section 2.3.
Therefore the p-orbitals of C5H5

- obey the correlation.
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A2´´  +  E1´´  +  E2´´   Æ   A2  +  E1  +  E2   Æ   A  +  E1  +  E2
D5 h D5 C5

This correlation allows us to conclude that the A representation projected out in C5  will correspond
to A2´´ in the higher symmetry D5 h group. A correlation can also be made between E1 and E1´´
and between E2 and E2´´. This problem can therefore be uniquely solved in C5 . Caution is
necessary when applying this method to problems where the results might be ambiguous. If the
problem contained both A1´´ and A2´´ functions in D5 h, then in C5  this corresponds to two A
functions. Then linear combinations of the two A functions would have to be used to construct the
desired A1´´ and A2´´ representations. Alternatively, the problem could be solved in D5 , where the
correlation would not be ambiguous.

For the C5H5
- ion in the lower symmetry character table C5 , the transformed orbitals p1-p5

behave as follows:  
C5 E C5 C52 C53 C54

_________________________________________________________________________

A 1 1 1 1 1
E1 2 2 cos 2p/5 2 cos 4p/5 2 cos 4p/5 2 cos 2p/5
E2 2 2 cos 4p/5 2 cos 2p/5 2 cos 2p/5 2 cos 4p/5

^q̂R(p1) p1 p2 p3 p4 p5

qR(p2)^
^ p2 p3 p4 p5 p1

From this the A representation, which correlates to A2´´ in D5 h, is given by
A2´´  =  N(p1 + p2 + p3 + p4 + p5)

Two similarly normalized E1 functions can be projected from the last 2 rows of the preceding table.
E1a = N[2p1 + 0.618p2 - 1.618p3 - 1.618p4 + 0.618p5]
E1b = N[2p2 + 0.618p3 - 1.618p4 - 1.618p5 + 0.618p1]

The sum and difference give an orthogonal pair of wavefunctions, which correlate to E1´´ in D5 h.

E1´´ N[2.618p1  +  2.618p2  -  p3  -  3.236p4  - p5]
N[1.382p1  -  1.382p2  -  2.236p3 +  2.236p5]

A similar procedure yields the E2" orbital set.

E2´´ N[0.382p1  +  0.382p2  -  p3 +  1.236p4  - p5]
N[3.618p1  -  3.618p2  +  2.236p3 -  2.236p5]

The symmetries of these p wavefunctions are sketched in Figure 2.7. The orbital with no nodal
plane between p orbitals, A2´´, is the most stable one. The next higher energy orbitals should be
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E1´´, which have one nodal plane, and then E2´´ with two such planes. Of course, the plane of the
paper is a nodal plane for all the orbitals, since they are pp in nature.
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Figure 2.7  The A 2
", E 1

", and E 2
" Symmetry Combinations of 

π-Orbitals in the Cyclopentadienide Anion.
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2.10  Additional Readings
Atkins, P. W.; Child, M. S.; Phillips, C. S. G.; Tables for Group Theory: Oxford University Press;
London, 1970.
Butler, P. H. Point Group Symmetry Applications:  Methods and Tables: Plenum Press, New York,
1981.
Salthouse, J. A.; Ware, M. J. Point Group Character Tables and Related Tables: Cambridge Univ.
Press, 1972.
Thomas, A. D.; Wood, G. V. Group Tables: Shiva Publ; Orpington, Kent, 1980.
Wilson, E. B. Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations. Dover:  New York, 1980.
Contains a complete set of correlation tables for the symmetry point groups.
2.11  Problems
Reduce the following representations:
1)

a)

4        0          0           0        0        4             0            0    

i s(yz)s(xz)s(xy)C2(x)C2(y)C2(z)E

In D2h

b)

3        0          -1       1       -2               1

i3C22C3E

In D3d

2S6 3sd

c)

 6     0       -2        0        4      6     0       0        2       -2

E    8C3    6C2    6C4    3C2    i    6S4    8S6    3sh    6sd

In Oh

7      1        1        -1       3        1     1       1        5       -1
2) The px, py, and pz orbitals are so named because they behave like the functions x, y, and z in

their nodal properties. To what irreducible representations do these functions belong to in the
C2v, D2d, and D4h point groups if they are located on an atom which lies at a position where
all symmetry elements intersect?

3) How would dxy, dxz, and dyz functions transform under the conditions of problem 2?
4) Show all possible subgroups of D6h that also contain a C6 axis, and construct a correlation
table for these groups.
5) Construct the C6  character table for real functions just as we did in the text for C5 .
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6) Use the C 6  character table derived above to calculate the symmetry adapted linear
combinations of p-orbitals in benzene.

14) Use symmetry to deduce a qualitative MO diagram for N2O.
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Answers to Problems:
1) a)  ag + b1g + b2u + b3u

b)  a2u + eg
c)  a1g + a2g + eg + t2u

2)  These transform the same way as the functions x,y, and z given in the character table. When you
work the problem you may obtain an answer that differs from that in the book if you do not
choose the same direction as x and y as they did. In that case deduce what orientation the
character table assumes for x and y. There usually isn't any ambiguity in the choice of z,
because it coincides with the unique symmetry axis.

3)  Calculate this by taking the direct product for the two representations. For example, xz will
transform like the direct product of the representation for x and z, which you deduced in
problem 2.

4)  There a total of 18 different subgroups for D6h, but only four contain a C6 axis (note the group
S6 is also a subgroup of D6h).

D6 h D6 C6 h C6 v C6
A1g A1 Ag A1 A
A2g A2 Ag A2 A
B1g B1 Bg B2 B
B2g B2 Bg B1 B
E1g E1 E1g E1 E1
E2g E2 E2g E2 E2
A1u A1 Au A2 A
A2u A2 Au A1 A
B1u B1 Bu B1 B
B2u B2 Bu B2 B
E1u E1 E1u E1 E1
E2u E2 E2u E2 E2

Note the flipping of B2 and B1 and A2 and A1 in C6v required by the correspondence between
characters for the common symmetry elements.
5)  The character table is given below in its real form.
C6 E C6 C3 C2 C32 C65

____________________________________________________
A 1 1 1 1 1 1
B 1 -1 1 -1 1 -1
E1 2 1 -1 -2 -1 1
E2 2 -1 -1 2 -1 -1
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Gp 6 0 0 0 0 0

6)  The Gp listed at the bottom of the C6 character table above reduces to A + B + E1 + E2. If we
call the pi orbitals p1 through p6, then use of the projection operator gives:
Y(A) = N(p1 + p2 + p3 + p4 + p5 + p6)
Y(B) = N(p1 - p2 + p3 - p4 + p5 - p6)
Y(E1a) = N(2p1 + p2 - p3 - 2p4 - p5 + p6)
Y(E1b) = N( p2 + p3 - p5 - p6)
Y(E2a) = N(2p1 - p2 - p3 + 2p4 - p5 - p6)
Y(E2b) = N(p2 - p3 + p5 - p6)
These wavefunctions can be correlated back to the correct representation in D4h symmetry by
looking at their symmetry properties. For example, the A function must be A1g, A2g, A1u, or A2u in
D6h. It consists of the in phase combination of all 6 p orbitals and it is u with respect to inversion
symmetry. From the character table, A1u and A2u can be distinguished by their different behavior
under either C2' operation. Since the function in question goes into -1 itself under a C2'
perpendicular to the C6 axis, this implies that it is an A2u function. Similarly Y(B) corresponds to
Y(B2g) with the choice that the C2' axis passes through opposite carbons in the ring. If we had
taken C2' to bisect a side of the hexagonal ring, then it would be B1g. It is interesting that no such
ambiguity exists for the A representations in this point group. For the E representations it is a bit
more complex, because both orbitals must be considered together to find the characters. We note
that both Y(E1a) and Y(E1b) are g orbitals, so the character for the identity will be +2. Thus, they
correspond to Y(E1ga) and Y(E1gb) in D6h. On the other hand, both Y(E2a) and Y(E2b) are u
functions. They correspond to Y(E2ua) and Y(E2ub) in the D6h point group.


