1.3 Summary of Symmetry Operations, Symmetry Elements, and Point Groups.

Rotation axis. A rotation by 360°/n that brings a three-dimensional body into an

A
equivalent configuration comprises a C, symmetry operation. If this operation is performed a
A A A
second time, the product C,,C;, equals a rotation by 2(360°/n), which may be written as Cp,2. If n
A A
is even, n/2 is integral and the rotation reduces to Cy/p. In general, a C,™ operation is reduced
A A
by dividing m and n by their least common divisor (e.g., Co® = C32). Continued rotation by
360°/n generates the set of operations:
A A A A A
Ch, an, Cn3, Cn4, = Cp"

A . A . . A A
where Cp" = rotation by a full 360° = E the identity. Therefore Cpy*m = Cy™. Operations
resulting from a C,, symmetry axis comprise a group that is isomorphic to the cyclic group of
order n. If a molecule contains no other symmetry elements than Cy, this set constitutes the
symmetry point group for that molecule and the group specified is denoted C,. When additional
symmetry elements are present, Cy, forms a proper subgroup of the complete symmetry point
group. Molecules that possess only a C, symmetry element are rare, an example being

Co(NH>CH,CH,NH»),Clo+, which possesses a sole C; symmetry element.

N

A
One special type of C;, operation exists only for linear molecules (e.g., HCl). Rotation by

any angle around the internuclear axis defines a symmetry operation. This element is called

A
C axis and an infinite number of operations C ¢ are associated with the element where ¢

denotes rotation in decimal degrees.

We already saw that molecules may contain more than one rotation axis. In BFs,

depicted below, a three-fold axis emerges from the plane of the paper intersecting the center of

the



triangular projection. Three Cp axes containing each B-F bond lie in the plane of the molecule
perpendicular to the three-fold axis. The rotation axis of highest order (i.e., C3) is called the
principal axis of rotation. When the principal Cy, axis has n even, then it contains a C, operation
associated with this axis. Perpendicular C, axes and their associated operations must be denoted

with prime and double prime superscripts.

Reflection planes. Mirror planes or planes of reflection are symmetry elements whose
associated operation, reflection in the plane, inverts the projection of an object normal to the
mirror plane. That is, reflection in the xy plane carries out the transformation (x,y,z) & (X,y,-z).
Mirror planes are denoted by the symbol o and given the subscripts v, d, and h according to the
following prescription. Planes of reflection that are perpendicular to a principal rotation axis of
even or odd order are named oy, (e.g., the plane containing the B and 3F atoms in BF3). Mirror
planes that contain a principal rotation axis are called vertical planes and designated oy. For
example, in BF3 there are three oy planes, each of which contains the boron atom, fluorine atom,
and is perpendicular to the molecular plane. Notice that for an odd n-fold axis there will be n oy
mirror planes which are similar. That is if we have one oy plane, then by operation of Cy, a total
of n times, we generate n equivalent mirror planes. The n oy operations comprise a conjugate

class. For even n the oy planes fall into two classes of 1/2 oy and /2 o4 planes, as illustrated

earlier in the chapter.

Rotoreflection axes or improper rotation axes. This new operation is best thought of as
the stepwise product of a rotation, and reflection in a plane perpendicular to the rotation axis.

. o AA . . .
We need to introduce it since a product such as Cg0p, is not equal to either a normal rotation or

reflection. To satisfy group closure a new symmetry operation must be introduced. An
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A A
inversion operation is the simplest rotoreflection operation and is given the name S, or 1. That
A AL . A A A
S, = 1 is immediately apparent because 1-(x,y,z) = (-x,-y,-z) and Cj(z)0(xy)-(X,y,z) =
A A A A A A
Ca(z)(x,y,-z) = (-X,-y,-z). Because C,; and op commute we have S, = C,0p for the general

. . . A A A A . .
rotoreflection operation. Since op™ = E for even m and for m odd oy™ = Oy, an S, axis requires
simultaneous independent existence of a Cy/, rotation axis and an inversion center when n is
even. For example, an S¢ axis generates the operations for the point group Sg¢. They are shown
below.

A A A A A A A A A A A A A A A A

S6, 562 = C320p? = C32, 563 = 53 = Co0p =1, S¢* = C32, S¢° = Cg0p, 5S¢0 = E.
An odd order rotoreflection axis requires independent existence of a Cy, axis and a oy, symmetry
element. An S7 axis generates the following operations.

A A A A A A A A A A A A A A A

57,572 = C72,573, 874 = C74, 573,576 = C7, 577 = C770p7 = 04, 578 = C78 =

A A A A A A A A A A A A A A A A

C7,57% = C720p, 5710 = C73, S711 = C746n, 5712 = C75, 5713 = C766Gy, S714 = E
The S7 axis generates a cyclic group of order fourteen and requires the independent existence of

C7 and oy. This group is denoted C7p, and not S7.

Conjugate Symmetry Elements and Operations. In the symmetry group of BF3 the
sequence of operations (/\33"1/6\,63 means to rotate by 120 ° perform /(\FV, then rotate back 120°.
This sequence of operations is equivalent to reflection in a plane rotated 120° from the initial
one, as shown below. The similarity transformation ((/\332)‘1 /(\FV(A:32 generates an operation, which
is the third vertical mirror plane. The three equivalent oy symmetry operations belong to the
same conjugate class. Symmetry equivalent symmetry operations (i.e., operations belonging to

symmetry elements that are interchanged by symmetry operations of the group) belong to the

same conjugate class. In BF3 all the operations associated with the equivalent C; elements
A A A
belong to the same class. This may be verified by the similarity transformations C3-1C,C3 and

A A A
(C32)"1 CpC32 operating on any of the three C» axis.
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When the principal axis is of even order two types of vertical reflection planes oy and og
are possible. Consider the planar ion PtCls2-, which contains one four-fold axis normal to the
molecular plane and four perpendicular C; axis as shown. Clearly the pair of axis labeled Cp”

C2|l Cz'

/

are equivalent, as are the pair of axis C" since the four-fold rotation interchanges elements
among the pairs; however, the C,” and C," axis are not equivalent. There is no operation that
will interchange these elements. Primes designate Cp axes perpendicular to an even principal
axis. The (/\:42 operation associated with the four-fold axis is called (/\32. You might be surprised
to find that a C4 axis and one perpendicular C;” axis generate the remaining three "primed" two-
fold axes. Action of (/\:4 on one Cy” axis generates the other C,” axis. With the application of (/\:4
or (/\:2 no new axes are generated; however, consider the product of operators (/\:462’ acting on

the point (x,y,z). Take one C;” axis to lie along the x axis and choose C4 coincident with the z
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A A
axis. The operation C,” on the general point (x,y,z) produces a new point at (X,-y,-z). The Cy
A
operation does not change z and rotates the molecule in the x,y plane. So C4 (x,y,z) &

y
('y,XaZ) *

A A A
(-y,x,z) and the product C4C2°(x,y,z) = C4(X,-y,-z) = (y,X,-Z) is equivalent to rotation around the
A
C," axis bisecting the xy quadrant of the coordinate system because Cy" (X,y,z) = (y,X,-2).

y

Cz" ,/
I”
e (X,y,2)
s )
7

/ P> X
,
/7

A A A
This proves that the combination of a C,” operation with C4 generates the C»" operation, and
A
that the two C;” belong to the same conjugate class. You may prove that the two C" comprise a
second class.

There are likewise two classes of vertical reflection planes. The two planes containing

the C4 axis and one Cy” axis are called oy. Those mirror planes containing the Cp" axis are

denoted o4. This illustrates an interesting consequence of a vertical reflection plane. Consider
. . . . A

the effect of /(\FV or /(\Fd on rotation around the principal axis. The effect of Oy is to change the

sense of
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rotation from counterclockwise to clockwise. This means that rotation by 360°/n and -360°/n are
equivalent. In other words a rotation énm and its inverse én‘m belong to the same conjugate
class when a mirror plane contains the rotation axis. For example, the operations of a C7 axis
fall into the classes (C7, C79); (C72, C79); (C73, C74) and for a Cg axis the classes are (Cg, Cg>);

(C3, C32); (Cp) when a oy or 0q mirror plane also exists.

Molecular symmetry groups. When you search for molecular symmetry elements, look
for rotations, reflections and rotoreflection elements, which interchange equivalent atoms in a
molecule and leave others untouched. The short hand notation for the various point groups uses
abbreviations, which often specify the key symmetry elements present. The complete set of
symmetry operations of a molecule defines a group, since they satisfy all the necessary
mathematical conditions. When confronted with a molecule whose symmetry group must be

determined, the following approach can be used.

Special symmetry groups usually are self-evident. The group D p, is the point group of
homonuclear diatomic molecules and other linear molecules that possess a oy plane (e.g., CO»).
For linear molecules an infinite number of oy planes always exist. The symbol D in a group
name always means that there are n-two-fold axes perpendicular to the n-fold principal axis. The
presence of o and oy planes in a molecule always requires the presence of nLC" axes, since
one can show that /(\Fh /(\FV = 6’2; however, the converse is not true. Therefore, there are an infinite
number of C; axes perpendicular to the C axis of the molecule. The C axis and oy generate
an infinite number of S ¢ operations; one is §2 =1

If a linear molecule does not contain a oy, plane, e.g., HCI or OCS, then it belongs to the
C v point group. This point group contains a C axis and an infinite number of oy planes.
Clearly C v is a proper subgroup of D p,.

A free atom belongs to the symmetry group Ky, which is the group of symmetry

operations of a sphere. We shall not be concerned with this point group; however, a
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consequence of spherical symmetry is the requirement that the angular wavefunctions of atoms

behave like spherical harmonics.

There are seven special symmetry groups, which contain multiple high order (Cp, n > 3)
axes. These are the only possibilities for 3-dimensional objects. The groups may be derived

from

octahedron tetrahedron cube

/ )- _____ P
(0% Ty (0%
3C, 4C; 3C,
dodecahedron

s

I I,
12 C 5 axes 12 C 5 axes

Figure 1.16. The Five Platonic Solids and Their Point Groups,
with The High Order C . Axes Listed.
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the symmetry operations of the five Platonic solids (octahedron, tetrahedron, cube, icosahedron,
dodecahedron). Platonic solids are solids, shown in figure 1.16, whose edges and verticies are

all equivalent and whose faces are all some regular polygon. The symmetry operations of the

tetrahedron comprise the group Tq. The cube and octahedron possess equivalent elements and
their operations define the Oy, group.

The pentagonal dodecahedron and icosahedron likewise define I, We will restrict our
discussion to the Oy, group and its subgroups, O, Tq, Ty, and T, since Iy and its subgroup I are
encountered less frequently. The collection of groups {O, Tq, Th, and T} are often referred to as
cubic groups. The symmetry elements belonging to an octahedron are: three C4 axes that pass
through opposite verticies of the octahedron; four C3 axes that pass through opposite triangular
faces of the octahedron; six C, axes that bisect opposite edges of the octaedron; four Sg axes
coincident with the C3 axes; three S4 axes coincident with the C4 axes; an inversion center or Sy
axis coincident with Cy; three o, which are perpendicular to one C4 axis and contain two others.
Therefore, a single plane defined as oy, also can be thought of as oy with respect to the other Cy4
axis. Similarly, there are six planes called o4, which are also oy planes containing a C3 axis.

Subgroups of Oy, are generated by removing the following symmetry elements:

0O = lacks 1, S4, S¢, on and 04 and is called the pure rotation subgroup of Oy,.

Tq =  this group lacks Cq4, i and oy, and is the group of tetrahedral molecules, e.g., CHa.
Th = this uncommon group is derived from T4 by removing S4 and o4 elements.

T = the pure rotation subgroup of Ty contains only C3 and C; axes.

If a molecule belongs to none of these special groups, then focus on the highest order
rotation axis. Those rare molecules that possess only one n-fold rotation axis and no other
symmetry elements belong to the Cy, symmetry group, which is cyclic. If only a rotation axis
exists and no mirror planes or other elements are obvious, a last check should be made for an Sy

axis of order higher than the obvious rotation axis. When a higher order S; axis can be found,
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then the Sy groups (n = even) are obtained. Naturally n must be even since é\nn = /C\Fh when n is
odd and both C, and oy exist independently. These groups (n = odd) are conventionally
designated Cpp. Also, when n = 2, the Sy group (remember Sy = i) is conventionally called C;.

If we add to a Cy, group noy (n odd) or n/20y and n/20g (n even) mirror planes, but no other
rotation axes, then the Cyy groups are generated. If to the elements of Cy, we add a horizontal
mirror plane, then we generate the Cpp groups. The product of én and /(\Fh also generate an Sy
symmetry element and its associated operations.

When additional n-two-fold axes perpendicular to C, are present, but no mirror planes,
then the Dy, groups are generated. Addition of a oy, plane to the rotation symmetry elements of a
Dy group generates the Dy groups. Similar to the Cyp groups an Sy symmetry axis is also
produced (if n is even an inversion center will be present). The product (Ajzlc\Fh (where Cj is
associated with n L Cy axes in the Dy group) generates vertical mirror planes so that the Dyp
group also contains noy planes (n odd) or n/20y and n/204 planes (n even). If in addition to the
elements of a Dy group an Sy, axis is present, then the Dpq groups are obtained. The product
é\néz (C» belongs to a C; axis perpendicular to the n-fold axis) yields the operation /(\Fd so that an

additional n dihedral mirror planes are required.

If a molecule contains as the only symmetry element a mirror plane, then the group is

called Cs. Finally, if no symmetry elements, other than E, exist, then the molecular symmetry

group is the trivial one called Cy. Table I.1 summarizes the groups we just discussed and their

associated elements. It provides a useful reminder of all the necessary elements when assigning

symmetry point groups.
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Table 1.1 Common Point Groups and Their Symmetry Elements

Point Group Symmetry Elements Present

C1 E

Cq E, on

G E,i

Cn E, Cy

D, n =odd E, Cy, n1Co

D, n =even E, C,, 221Cy", 0/21Cy”

Chv n =odd E, C,, noy

Chv n =even E, C,, 20y, /204

Cun n =odd E, C,, oh, Sn

Cun n =even E, C,, onh, Sy, 1

Dnh n =odd E, Cy, 0n, nLCy, Sy, noy

Dnh n =even E, Cp, on, V2LCy”" 1/21Cy"", Sy, M/20y, M204, 1
Dnd n =odd E, Cy, nLCy 1, Sop, nog

Dnd n =even E, Ch, nC2”, Sop, noyg

Sn n = even only E, S;, Cn/2 and i if 1/2 odd

T E, 4C3, 3Cy

Th E, 4C3, 3Cy, 4Soy, 1, 30

Tq E, 4C3, 3Cy, 3S4, 604

(0] E, 3Cy4, 4C3, 6Co

On E, 3Cy4, 4C3, 6Cp, 4S¢, 3S4, 1, 30p, 604
I E, 6Cs, 10C3, 15Cy

Ih E, 6Cs, 10C3, 15Cy, 1, 6S10, 10S¢, 150
Kh E, infinite numbers of all symmetry elements
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1.4 Site Symmetry of Molecules and Ions in Solids

Most of the elements, as well as most inorganic compounds, exist as solids. The ideas
about symmetry point groups can be applied to molecules or ions in crystal lattices in the context
of site symmetry and pseudosymmetry. A crystal results from the periodic repetition of a
specific arrangement of atoms through space. For a regular infinite array of objects the act of
translation in space can be a valid symmetry operation, in addition to those described previously.
Consider the infinite one-dimensional lattice
Translation to the right or left by an integral multiple of the lattice spacing yields an
indistinguishable physical configuration. This operation is important in considering atomic
arrays in crystals. Seven three dimensional boxes (or parallelpipeds) used to summarize three-
dimensional packing are given in Table I.2. Each box can be classified by the lengths of its three

edges a, b, and c, which are assigned using the convention for a right-handed coordinate system.

Table 1.2: The Seven Crystal Systems

System Conditions on Cell Parameters Lattice Symmetry
triclinic azb#c,azP#y Cior_l
monoclinic azbzc,a=y=90°, f>90° Cap or 2/m
orthorhombic azbzc,a=p=y=90° Dp or mmm
tetragonal a=bzc,a=pf=y=90° Dy4p or 4/mmm
trigonal (rhombohedral setting)* a=b=c;a=p=y=290° D3q or 3m
hexagonal a=b=c;a=pf=90"y=120° Dgn or 6/mmm
cubic a=b=c;a=pf=y=90° Op or m3m

*A hexagonal setting is also possible.
The angles between the vectors are defined as oo = between b and ¢, B = between a and ¢ and y =

between a and b. These unit cells summarize the fundamental packing patterns possible in
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solids. The rightmost column in this table lists the symmetry point group of the crystal system in

conventional (Schoenflies) notation, along with the Hermann-Maugin equivalent used by

crystallographers and solid state chemists. In the latter notation C,, rotation axes are denoted by
n, mirror planes by m and oy mirror planes are denoted n/m. An inversion center is specified by
a bar above the principal rotation axis. In a formal approach to space groups the addition of
centered lattices and the possible subsymmetries within each unit cell would be developed to
yield the 230 space groups. For an excellent discussion of these considerations we recommend
the text by Stout and Jensen listed in the references for this chapter. Extensive tabulations for the
symmetry elements of each space group can be found in the reference work, International Tables
for X-ray Crystallography, available in most libraries. The discussion here will be limited to the
relation between the lattice symmetry for the solid and the point group symmetry of an
individual ion or molecule in the unit cell.

It is important to recognize that for molecules in crystals there is not necessarily a
correlation between molecular symmetry and the symmetry of the unit cell. Highly symmetrical
molecules may crystallize in low symmetry unit cells and molecules of low symmetry may
crystallize in unit cells of high symmetry. Atoms, molecules, or ions in a crystal may occupy
two types of positions in a unit cell. The first is called a general position, which exists for all
unit cells. There is no crystal symmetry associated with a general position. When a high
symmetry molecule, e.g., an octahedral metal complex, occupies a general position then it
rigorously possesses no symmetry because the environment of the crystal about it is asymmetric.
The asymmetry of the local environment distorts the site symmetry to Cp or 1; however, an
octahedral pseudosymmetry remains. The low symmetry crystal environment can often be
detected spectroscopically from a splitting of degenerate E or T energy levels. Perturbation of a
molecule's symmetry in the crystal from its isolated symmetry, as in the gas phase, may be great
or small. The magnitude of the perturbation depends on the strength of interactions between the
molecule and its environment. In a molecular crystal, where the forces will primarily be Van der

Waals in nature, the deviation from the idealized gas phase molecular symmetry will be small.
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In ionic crystal, where strong electrostatic forces are present, the distortion of the idealized
symmetry is expected to be greater.

The other kind of position in a unit cell is called a special position. These special
positions generally have unit cell (x, y, z) coordinates of 0, 1/2, 1/4, or 1/3 and are listed for each
space group in the International Tables for X-ray Crystallography. When a molecule or ion
occupies a special position then it possesses a rigorous site symmetry, which is determined by
the crystal environment. Several different site symmetries are possible in a unit cell, the highest

being the maximum symmetry of the cell. Thus cubic unit cells may have special positions of

Op symmetry, which an octahedral molecule could occupy. If an octahedral molecule occupies
such a position, then the symmetry is rigorously Oy, and splitting of degenerate energy levels by
a low symmetry crystal environment does not occur. Coupling between molecules in the unit
cell may, however, give exciton splittings, as noted later.

A simple example illustrates the essential points. Consider the case of triclinic crystals.
Two space groups are possible. One, denoted PI, has the maximum symmetry indicated in
Table 1.2. The other P1, a subgroup of PI, has no symmetry. In P1 every position in the unit
cell has a crystal environment with complete asymmetry. There is generally only one molecule
(more rigorously 1 asymmetric unit since a pair or e.g., a hydrogen bonded cluster of molecules
can sometimes form a packing unit) per unit cell in this space group. In PI, which possesses an
inversion center at the origin of the unit cell, an arbitrary point or general position (x, y, z) is
transformed to (-x, -y, -z) by the inversion operation. Thus, there must be two molecules
(asymmetric units) per unit cell if they occupy a general position. It is possible for molecules
that contain an inversion center to occupy the special position (0. 0, 0). Then there need be only
one asymmetric unit per cell, with the added condition that it possess rigorous inversion
symmetry. Similar conditions hold for higher symmetry space groups, but the basic concept
resembles that illustrated above.

Another concern, beyond that of the site symmetry in a crystal, is the possibility of

coupling between asymmetric units in a crystal. In ionic solids the forces that interconnect all
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the asymmetric units in a cell makes it imperative that these couplings be considered if one wants
to understand vibrations in the solid state. Even molecular crystals can exhibit unusual splittings

from such phenomena. One example occurs for coupling between excited states in crystals and

this is often referred to as exciton coupling. For example, the excited states 0; and 0, of two
asymmetric units in Pl could interact to yield composite sum and difference net states (01 + 07
and 01 - 02). In this way a single excited state of the isolated molecule gives rise to two crystal
states of different energy. The student with a serious interest in solid-state spectroscopy will
need to delve into this in more detail. For most readers this section serves as a caveat should

they attempt to interpret spectra of solids.
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1.6 Problems

1)

2)
3)

Determine which of the following are groups. For those, that are not groups, specify the
missing conditions.
a) The set of all positive integers with group multiplication defined as normal addition.
b) The set of all integers (+ and 0) with group multiplication defined as normal addition.
c¢) The set of all integers (+ and 0) with group multiplication defined as normal
multiplication.
Prove that all groups of prime order are isomorphic to the cyclic group of that order.

Give the point group to which the following molecules belong.

a) MnQOy42- c) WFg
b) Rhg(CO)i6 d) MogCly, (8 face capping, 4 terminal Cl)
e) methane f) cubane
g) benzene h) Mny(CO)10
i) RepClg2- j) OsCl4N”
k) HpS 1)
H\ /B\ /H

T N
1O

~~— \T/ w
H (planar conformation ignore H

on carbons)
m) Co(en)s+ n) ¢is-MoClp(CO)4
0) trans-MoCly(CO)4 p) fac-Mo(CO)3(PPh3)3 (coordination symmetry only,
i.e., ignore Ph groups)
q) mer-Mo(CO)3(PPh3)3 r) AlxClg
s) BrClF t) CO2
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4)

5)

6)

u) Sg (cyclic crown structure) v) PPhs (with propeller conformation of phenyl rings)
w) HOCI x) cyclo-(BCl)4(NCH3)4
y) Ce(NO3)¢2- (the coordination environment of Ce is icosahedral-each nitrate is bound in
a

planar bidentate fashion such that trans NO3~ groups are eclipsed).
z) PF5
Consider the 2-dimensional packing of regular polygons of three-fold through eight-fold
symmetry. Which ones can form a close-packed planar network with no overlapping or
gaps in the plane?
Based on work in 4 what are the allowed rotational symmetry axes in unit cells of 3-
dimensional crystalline solids?

A
Consider the Sy operation around the z axis. Show that its effect on the vector (x, y, z) is

the same as the inversion operation.
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1)

2)

4)

5)

38

Key to Problems
a) Not group - identity element missing and inverse missing.
b) Yes
c) Not group - inverse elements missing.
Proof: Consider how one generates a group of prime order. Lagrange's theorem tells us
the elements of a group must be an integral divisor of the order of the group. If n = prime
then the elements are of order n. Since the # of elements = n, then one element a, and its
powers generate the group

a, a2, gl

This is just the cyclic group of order n. Q.E.D.
a) Tag; b) Ta; ©) On; d) On; e) Ta; ) On; g Den; h) Dag; 1) Dan; j) Cavik)

;1) C3n; m) D3; n) Cay; 0) Dan; p) Cav; @) Cay; 1) Dan; s) Ci; ©) D p; u) Dyg;

v) C3; W) Cs; x) Sa; y) Th; 2) Dan
It is possible to pack triangles, squares, and hexagons in a close packed 2-dimensional array

but not pentagons: See figure on following page.

AN A
C», C3, C4, and Cg; note: the C4 requires the possibility of C42 = Co.
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